基于Udwadia-Kalaba方程的3-RPS并聯機構軌跡跟蹤控制
首發時間:2023-04-06
摘要:3-RPS并聯機構廣泛應用于工業、醫療和航空航天等領域,實現其軌跡跟蹤控制的方法有多種,然而,利用這些方法計算拉格朗日乘子較為復雜,目前相關研究尚不充分。本文基于Udwadia-Kalaba方程(以下簡稱U-K方程),提出了一種3-RPS并聯機構軌跡跟蹤控制的新方法,利用該方法,可以得到3-RPS并聯機構解析形式的動力學方程,并且同時考慮了完整約束和非完整約束是否理想的。與其他方法最主要的區別在于,本文將約束劃分為結構約束和運動學約束,利用結構約束建立了3-RPS并聯機構的動力學模型,利用運動學約束表示期望的運動軌跡。對于3-RPS并聯機構這一非線性的動力學系統,利用約束的二階微分形式來獲得其滿足期望運動的約束力,在實現軌跡跟蹤控制的整個過程中,不需要拉格朗日乘子或者偽廣義速度等輔助變量。最后利用MATLAB進行數值仿真,結果表明3-RPS并聯機構能夠滿足期望運動,且跟蹤軌跡精確。
關鍵詞: 機械電子工程 Udwadia-Kalaba理論 軌跡跟蹤控制 3-RPS并聯機構
For information in English, please click here
Trajectory Tracking Control of 3-RPS Parallel Mechanism Based on Udwadia-Kalaba Equation
Abstract:3-RPS parallel mechanisms are widely used in industrial, medical, aerospace and other fields. There are many ways to realize trajectory tracking control. However, the calculation of Lagrange multipliers by these methods is complicated, and relevant researches are not sufficient at present. Based on Udwadia-Kalaba equation (U-K equation), a new method for trajectory tracking control of 3-RPS parallel mechanism is proposed in this paper. By using this method, the dynamics equation of 3-RPS parallel mechanism in analytic form can be obtained, and whether the holonomic and nonholonomic constraints are ideal is considered at the same time. The most important difference with other methods is that the constraints are divided into structural constraints and kinematic constraints. The dynamics model of 3-RPS parallel mechanism is established by using structural constraints, and the kinematic constraints are used to represent the expected motion trajectory. For the nonlinear dynamic system of 3-RPS parallel mechanism, the second order differential form of constraints is used to obtain the constraint force to meet the expected motion. In the whole process of trajectory tracking control, auxiliary variables such as Lagrange multipliers or pseudo-generalized velocity are not needed. Finally, the simulation results show that the 3-RPS parallel mechanism can meet the desired motion, and the tracking trajectory is accurate.
Keywords: Mechatronic Engineering Udwadia-Kalaba equation Trajectory tracking control 3-RPS parallel mechanism
引用
No.****
動態公開評議
共計0人參與
勘誤表
基于Udwadia-Kalaba方程的3-RPS并聯機構軌跡跟蹤控制
評論
全部評論