基于去趨勢波動分析的中國氣溫變化趨勢研究
首發時間:2018-10-31
摘要:在全球暖化的大背景下進行氣溫趨勢分析有著十分重要的現實意義。然而,傳統的趨勢分析繼續直接利用線性回歸并忽略了氣溫序列中可能的自相關性,因此可能對結果產生影響。本文選取了我國590個氣象觀測站的近46年的氣溫數據作為研究對象,應用去趨勢波動分析法(Detrended Fluctuation Analysis) 來分析序列的長程相關性以及其對氣溫的變化趨勢的影響:590個站點中有555個站點的趨勢是不顯著的。然而,線性回歸方法則只有49個站點估計出來的趨勢是不顯著的。兩者之間的差異源于線性回歸法沒有考慮長程相關性的影響。我們進一步推測了在長程相關性存在時的最可能趨勢并發現,如果不考慮長程相關性而僅使用線性回歸估計趨勢會顯著高估趨勢??紤]到長程相關性在現實數據中的普遍性,趨勢研究時必須將其考慮在內。我們的分析為這類情況提供了一般研究框架。
關鍵詞: 長程相關性 去趨勢波動分析 氣溫序列 趨勢 顯著性。
For information in English, please click here
Trend analysis of the temperature variation in China based on detrending fluctuation analysis
Abstract:As globing warming has raised increasing concern in these years, research on trends in climate has become a hot topic. Usually, the linear regression is employed for trend analysis. This detection method works on the basis of an assumption that the series is just first-order correlated or uncorrelated at all. However, in the real-life data, especially in the climatic data, e.g. the temperature data, there generally exists long-term correlation. Therefore, the direct application of the linear regression analysis is inappropriate. This study employs Detrended Fluctuation Analysis to investigate trends in temperature data in 590 meteorological stations of China in recent 46 years. The result shows that 555 stations out of 590 have insignificant trends. In contrast, only 49 stations display insignificant trends if using the traditional linear regression. Such difference should be due to the effect of long-term correlation. Furthermore, we try to calculate the most possible trend in the long-term correlated temperature data. Our anlaysis demonstrates that the traditional linear regression method, which does not take long-term correlations into account, would significantly overestimate the trend in observed data. Therefore, the effect of long-term correlation has to be taken into consideration in trend analysis of the real-life data. Our analysis provides a general framework for the trend analysis of long-term correlated data.
Keywords: Long-term correlation ~Detrended fluctuation analysis ~temperature series ~trend ~significance.
引用
No.****
動態公開評議
共計0人參與
勘誤表
基于去趨勢波動分析的中國氣溫變化趨勢研究
評論
全部評論